Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Engineering Reports ; 2023.
Article in English | Web of Science | ID: covidwho-20245046

ABSTRACT

AI and machine learning are increasingly often applied in the medical industry. The COVID-19 epidemic will start to spread quickly over the planet around the start of 2020. At hospitals, there were more patients than there were beds. It was challenging for medical personnel to identify the patient who needed treatment right away. A machine learning approach is used to predict COVID-19 pandemic patients at high risk. To provide input data and output results that execute the machine learning model on the backend, a straightforward Python Flask web application is employed. Here, the XGBoost algorithm, a supervised machine learning method, is applied. In order to predict high-risk patients based on their current underlying health issues, the model uses patient characteristics as well as criteria like age, sex, health issues including diabetes, asthma, hypertension, and smoking, among others. The XGBoost model predicts the patient's severity with an accuracy of about 98% after data pre-processing and training. The most important factors to the models are chosen to be age, diabetes, sex, and obesity. Patients and hospital personnel will benefit from this project's assistance in making timely choices and taking appropriate action. This will let medical personnel decide how much time and space to devote to the COVID-19 high-risk patients. providing a treatment that is both efficient and ideal. With this programme and the necessary patient data, hospitals may decide whether a patient need immediate care or not.

2.
2023 9th International Conference on Advanced Computing and Communication Systems, ICACCS 2023 ; : 2042-2047, 2023.
Article in English | Scopus | ID: covidwho-20243457

ABSTRACT

The conventional procedure used in all of India's major regions is attendance monitoring on paper with pens. Although the final data is computerized, it takes a long time to get from a classroom to a database. The effectiveness of the classes is directly impacted by the number of absences. The attendance takes up almost half of the lecture's allotted time. The alternative method that is being used involves using fingerprints, but even this approach is ineffective since it takes so long. Due to the illnesses (COVID-19) spreading over the world, however, the situation as it stands right now does not make this the best course of action. Therefore, it will be advisable to develop a contactless and more efficient. © 2023 IEEE.

3.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20242760

ABSTRACT

During the Covid-19 pandemic, the insurance industry's digital shift quickened, resulting in a surge in insurance fraud. To combat insurance fraud, a system that securely manages and monitors insurance processes must be built by combining a machine learning classification framework with a web application. Examining and identifying fraudulent features is a frequent method of detecting fraud, but it takes a long time and can result in false results. One of these issues is addressed by the proposed solution. By digitalizing the paper-based workflow in insurance firms, this paper intends to improve the efficiency of the existing approach. This method also aimed to improve the present approach's data management by integrating a web application with a machine learning stacking classifier framework experimented on a linear regression-based iterative imputed data for detecting fraud claims and making the entire claim processing and documentation process more robust and agile. © 2022 IEEE.

4.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20242502

ABSTRACT

The COVID-19 condition had a substantial impact on the education sector, corporate sector and even the life of individual. With this pandemic situation e-learning/distance learning has become certain in the education sector. In spite of being beneficial to students and teachers, its efficacy in the education domain depends on several factors such as handiness of ICT devices in various socio economic groups of people and accessible internet facility. To analyze the effectiveness of this new system of e learning Sentiment Analysis plays a predominant role in identifying the user's perception. This paper focus on identifying opinions of social media users i.e. Twitter on the most prevailing issue of online learning. To analyze the subjectivity and polarity of the dynamic tweets extracted from Twitter the proposed study adopts TextBlob. As Machine Learning (ML) models and techniques manifests superior accuracy and efficacy in opinion classification, the proposed solution uses, TF-IDF (Term Frequency-Inverse Document Frequency) as feature extraction technique to build and evaluate the model. This manuscript analyses the performance of Multinomial Naive Bayes Classifier, DecisionTreeClassifier, SVC and MLP Classifier with respect to performance measure as Accuracy. © 2022 IEEE.

5.
CEUR Workshop Proceedings ; 3395:314-319, 2022.
Article in English | Scopus | ID: covidwho-20240287

ABSTRACT

This paper describes my work for the Information Retrieval from Microblogs during Disasters.This track is divided into two sub-tasks. Task 1 is to build an effective classifier for 3-class classification on tweets with respect to the stance reflected towards COVID-19 vaccines.Task 2 is to devise an effective classifier for 4-class classification on tweets that can detect tweets that report someone experiencing COVID-19 symptoms.This paper proposes a classification method based on MLP classifier model.The evaluation shows the performance of our approach, which achieved 0.304 on F-Score in Task 1 and 0.239 on F-Score in Task 2. © 2022 Copyright for this paper by its authors.

6.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20237674

ABSTRACT

Host genetic susceptibility is a key risk factor for severe illness associated with COVID-19. Despite numerous studies of COVID-19 host genetics, our knowledge of COVID-19-associated variants is still limited, and there is no resource comprising all the published variants and categorizing them based on their confidence level. Also, there are currently no computational tools available to predict novel COVID-19 severity variants. Therefore, we collated 820 host genetic variants reported to affect COVID-19 susceptibility by means of a systematic literature search and confidence evaluation, and obtained 196 high-confidence variants. We then developed the first machine learning classifier of severe COVID-19 variants to perform a genome-wide prediction of COVID-19 severity for 82,468,698 missense variants in the human genome. We further evaluated the classifier's predictions using feature importance analyses to investigate the biological properties of COVID-19 susceptibility variants, which identified conservation scores as the most impactful predictive features. The results of enrichment analyses revealed that genes carrying high-confidence COVID-19 susceptibility variants shared pathways, networks, diseases and biological functions, with the immune system and infectious disease being the most significant categories. Additionally, we investigated the pleiotropic effects of COVID-19-associated variants using phenome-wide association studies (PheWAS) in ~40,000 BioMe BioBank genotyped individuals, revealing pre-existing conditions that could serve to increase the risk of severe COVID-19 such as chronic liver disease and thromboembolism. Lastly, we generated a web-based interface for exploring, downloading and submitting genetic variants associated with COVID-19 susceptibility for use in both research and clinical settings (https://itanlab.shinyapps.io/COVID19webpage/). Taken together, our work provides the most comprehensive COVID-19 host genetics knowledgebase to date for the known and predicted genetic determinants of severe COVID-19, a resource that should further contribute to our understanding of the biology underlying COVID-19 susceptibility and facilitate the identification of individuals at high risk for severe COVID-19.Copyright © 2023 Elsevier Inc.

7.
Cancer Research, Statistics, and Treatment ; 5(1):116-118, 2022.
Article in English | EMBASE | ID: covidwho-20237640
8.
Complex Intell Systems ; : 1-13, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-20233279

ABSTRACT

COVID-19 has caused havoc globally due to its transmission pace among the inhabitants and prolific rise in the number of people contracting the disease worldwide. As a result, the number of people seeking information about the epidemic via Internet media has increased. The impact of the hysteria that has prevailed makes people believe and share everything related to illness without questioning its truthfulness. As a result, it has amplified the misinformation spread on social media networks about the disease. Today, there is an immediate need to restrict disseminating false news, even more than ever before. This paper presents an early fusion-based method for combining key features extracted from context-based embeddings such as BERT, XLNet, and ELMo to enhance context and semantic information collection from social media posts and achieve higher accuracy for false news identification. From the observation, we found that the proposed early fusion-based method outperforms models that work on single embeddings. We also conducted detailed studies using several machine learning and deep learning models to classify misinformation on social media platforms relevant to COVID-19. To facilitate our work, we have utilized the dataset of "CONSTRAINT shared task 2021". Our research has shown that language and ensemble models are well adapted to this role, with a 97% accuracy.

9.
J Clin Med ; 12(10)2023 May 17.
Article in English | MEDLINE | ID: covidwho-20237806

ABSTRACT

(1) In the present study, we used data comprising patient medical histories from a panel of primary care practices in Germany to predict post-COVID-19 conditions in patients after COVID-19 diagnosis and to evaluate the relevant factors associated with these conditions using machine learning methods. (2) Methods: Data retrieved from the IQVIATM Disease Analyzer database were used. Patients with at least one COVID-19 diagnosis between January 2020 and July 2022 were selected for inclusion in the study. Age, sex, and the complete history of diagnoses and prescription data before COVID-19 infection at the respective primary care practice were extracted for each patient. A gradient boosting classifier (LGBM) was deployed. The prepared design matrix was randomly divided into train (80%) and test data (20%). After optimizing the hyperparameters of the LGBM classifier by maximizing the F2 score, model performance was evaluated using several test metrics. We calculated SHAP values to evaluate the importance of the individual features, but more importantly, to evaluate the direction of influence of each feature in our dataset, i.e., whether it is positively or negatively associated with a diagnosis of long COVID. (3) Results: In both the train and test data sets, the model showed a high recall (sensitivity) of 81% and 72% and a high specificity of 80% and 80%; this was offset, however, by a moderate precision of 8% and 7% and an F2-score of 0.28 and 0.25. The most common predictive features identified using SHAP included COVID-19 variant, physician practice, age, distinct number of diagnoses and therapies, sick days ratio, sex, vaccination rate, somatoform disorders, migraine, back pain, asthma, malaise and fatigue, as well as cough preparations. (4) Conclusions: The present exploratory study describes an initial investigation of the prediction of potential features increasing the risk of developing long COVID after COVID-19 infection by using the patient history from electronic medical records before COVID-19 infection in primary care practices in Germany using machine learning. Notably, we identified several predictive features for the development of long COVID in patient demographics and their medical histories.

10.
Heliyon ; 9(4): e15416, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20234578

ABSTRACT

Melanoma is an abnormal proliferation of skin cells that arises and develops in most of the cases on surface of skin that is exposed to copious amounts of sunlight. This common type of cancer may develop in areas of the skin that are not exposed to a much abundant sunlight. The research addresses the problem of Segmentation and Classification of Melanoma Skin Cancer. Melanoma is the fifth most common skin cancer lesion. Bio-medical Imaging and Analysis has become more promising, interesting, and beneficial in recent years to address the eventual problems of Melanoma Skin Cancerous Tissues that may develop on Skin Surfaces. The evolved research finds that Attributes Selected for Classification with Color Layout Filter model. The research has produced an optimal result in terms of certain performance metrics accuracy, precision, recall, PRC (what is PRC? Expansion is needed in Abstract), The proposed method has yielded 90.96% of accuracy and 91% percent of precise and 0.91 of recall out of 1.0, 0.95 of ROC AUC, 0.87 of Kappa Statistic, 0.91 of F-Measure. It has been noticed a lowest error with reference to proposed method on certain dataset. Finally, this research recommends that the Attribute Selected Classifier by implementing one of the image enhancement techniques like Color Layout Filter is showing an efficient outcome.

11.
Comput Biol Med ; 162: 107060, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2327839

ABSTRACT

With the COVID-19 pandemic causing challenges in hospital admissions globally, the role of home health monitoring in aiding the diagnosis of mental health disorders has become increasingly important. This paper proposes an interpretable machine learning solution to optimise initial screening for major depressive disorder (MDD) in both male and female patients. The data is from the Stanford Technical Analysis and Sleep Genome Study (STAGES). We analyzed 5-min short-term electrocardiogram (ECG) signals during nighttime sleep stages of 40 MDD patients and 40 healthy controls, with a 1:1 gender ratio. After preprocessing, we calculated the time-frequency parameters of heart rate variability (HRV) based on the ECG signals and used common machine learning algorithms for classification, along with feature importance analysis for global decision analysis. Ultimately, the Bayesian optimised extremely randomized trees classifier (BO-ERTC) showed the best performance on this dataset (accuracy 86.32%, specificity 86.49%, sensitivity 85.85%, F1-score 0.86). By using feature importance analysis on the cases confirmed by BO-ERTC, we found that gender is one of the most important factors affecting the prediction of the model, which should not be overlooked in our assisted diagnosis. This method can be embedded in portable ECG monitoring systems and is consistent with the literature results.


Subject(s)
COVID-19 , Depressive Disorder, Major , Humans , Heart Rate/physiology , Depressive Disorder, Major/diagnosis , Bayes Theorem , Depression , Pandemics , COVID-19/diagnosis , Polysomnography/methods , Machine Learning , Sleep Stages/physiology , Hospitals
12.
2023 International Conference on Intelligent Systems for Communication, IoT and Security, ICISCoIS 2023 ; : 157-161, 2023.
Article in English | Scopus | ID: covidwho-2327239

ABSTRACT

This project aims to devise an alternative for Coronavirus detection using various audio signals. The aim is to create a machine-learning model assisted by speech processing techniques that can be trained to distinguish symptomatic and asymptomatic Coronavirus cases. Here the features exclusive to the vocal cord of a person is used for covid detection. The procedure is to train the classifier using a data set containing data of people of various ages both infected and disease-free, including patients with comorbidities. We presented a machine learning-based Coronavirus classifier model that can separate Coronavirus positive or negative patients from cough, breathing, and speech recordings. The model was trained and evaluated using several machine learning classifiers such as Random Forest Classifier, Logistic Regression (LR), Decision Tree Classifier, k-nearest Neighbour (KNN), Naive Bayes Classifier, Linear Discriminant Analysis, and a neural network. This project helps track COVID-19 patients at a low cost using a non-contactable procedure and reduces the workload on testing centers. © 2023 IEEE.

13.
2023 IEEE International Conference on Integrated Circuits and Communication Systems, ICICACS 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2325416

ABSTRACT

COVID 19 is constantly changing properties because of its contagious as an urgent global challenge, and there are no vaccines or effective drugs. Smart model used to measure and prevent the spread of COVID 19 continues to provide health care services is an urgent need. Previous methods to identify severe symptoms of coronavirus in the early stages, but they have failed to predict the symptoms of coronavirus in an accurate way and also take more time. To overcome these issues the effective severe coronavirus symptoms techniques are proposed. Initially, Gradient Conventional Recursive Neural Classifier based classification and Linear Discriminant Genetic Algorithm used feature selection, mutation, and cross-analysis of features of coronary symptoms. These methods are used to select optimized features and selected features, and then classified by neural network. This Gradient Conventional Recursive Neural Classifier selects features based on the correlation between features that reduce irrelevant features involved in the identification process of coronary symptoms. Gradient Conventional Recursive Neural Classifier based on each function, helping to maximize the correlation between the prediction accuracy of coronavirus symptoms. For this reason, it has always been recommended in an effort to increase the accuracy and reliability of diagnostics to use machine learning to design different classification models. © 2023 IEEE.

14.
J Diabetes Metab Disord ; : 1-14, 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2324078

ABSTRACT

Background: Since its emergence in December 2019, until June 2022, coronavirus 2019 (COVID-19) has impacted populations all around the globe with it having been contracted by ~ 535 M people and leaving ~ 6.31 M dead. This makes identifying and predicating COVID-19 an important healthcare priority. Method and Material: The dataset used in this study was obtained from Shahid Beheshti University of Medical Sciences in Tehran, and includes the information of 29,817 COVID-19 patients who were hospitalized between October 8, 2019 and March 8, 2021. As diabetes has been shown to be a significant factor for poor outcome, we have focused on COVID-19 patients with diabetes, leaving us with 2824 records. Results: The data has been analyzed using a decision tree algorithm and several association rules were mined. Said decision tree was also used in order to predict the release status of patients. We have used accuracy (87.07%), sensitivity (88%), and specificity (80%) as assessment metrics for our model. Conclusion: Initially, this study provided information about the percentages of admitted Covid-19 patients with various underlying disease. It was observed that diabetic patients were the largest population at risk. As such, based on the rules derived from our dataset, we found that age category (51-80), CPR and ICU residency play a pivotal role in the discharge status of diabetic inpatients.

15.
Fundamental Research ; 2023.
Article in English | ScienceDirect | ID: covidwho-2320381

ABSTRACT

The coronavirus disease 2019 (COVID-19) continues to have a huge impact on health care and economic systems around the world. The first question to ponder is to understand the flow of COVID-19 in the spatial and temporal dimensions. We collected 7 Omicron clusters outbreaks in China since the outbreak of COVID-19 as of August 2022, selected outbreak cases from different Provinces and cities, and collected variable indicators that affect spillover outcomes, such as distance, migration index, PHSM index, daily reported cases number and so on. First, variables influencing spillover outcome events were assessed and analyzed retrospectively by constructing an infectious disease dynamics model and a classifier model, and secondly, the association between explanatory variables and spillover outcome events was constructed by fitting a logistics function. This study incorporates 7 influencing factors and classifies the spillover risk level into 3 levels. If different outbreak sites could be classified into different levels of spillover, it may reduce the pressure of epidemic prevention in some cities due to the lack of a uniform standard, which might be more conducive to achieving the goal of "dynamic zero".

16.
International Journal of Biology and Biomedical Engineering ; 17:48-60, 2023.
Article in English | EMBASE | ID: covidwho-2318564

ABSTRACT

Respiratory diseases become burden to affect health of the people and five lung related diseases namely COPD, Asthma, Tuberculosis, Lower respiratory tract infection and Lung cancer are leading causes of death worldwide. X-ray or CT scan images of lungs of patients are analysed for prediction of any lung related respiratory diseases clinically. Respiratory sounds also can be analysed to diagnose the respiratory illness prevailing among humans. Sound based respiratory disease classification against healthy subjects is done by extracting spectrogram from the respiratory sound signal and Convolutional neural network (CNN) templates are created by applying the extracted features on the layered CNN architecture. Test sound is classified to be associated with respiratory disease or healthy subjects by applying the testing procedure on the test feature frames of spectrogram. Evaluation of the respiratory disease binary classification is performed by considering 80% and 20% of the extracted spectrogram features for training and testing. An automated system is developed to classify the respiratory diseases namely upper respiratory tract infection (URTI), pneumonia, bronchitis, bronchiectasis, and coronary obstructive pulmonary disease (COPD) against healthy subjects from breathing & wheezing sounds. Decision level fusion of spectrogram, Melspectrogram and Gammatone gram features with CNN for modelling & classification is done and the system has deliberated the accuracy of 98%. Combination of Gammatone gram and CNN has provided very good results for binary classification of pulmonary diseases against healthy subjects. This system is realized in real time by using Raspberry Pi hardware and this system provides the validation error of 14%. This automated system would be useful for COVID testing using breathing sounds if respiratory sound database with breathing sound recordings from COVID patients would be available.Copyright © 2023 North Atlantic University Union NAUN. All rights reserved.

17.
20th International Learning and Technology Conference, L and T 2023 ; : 120-127, 2023.
Article in English | Scopus | ID: covidwho-2316285

ABSTRACT

Covid-19 has had a destructive influence on global economics, social life, education, and technologies. The rise of the Covid-19 pandemic has increased the use of digital tools and technologies for epidemic control. This research uses machine learning (ML) models to identify populated areas and predict the disease's risk and impact. The proposed system requires only details about mask utilization, temperature, and distance between individuals, which helps protect the individual's privacy. The gathered data is transferred to an ML engine in the cloud to determine the risk probability of public areas concerning Covid-19. Extracted data are input for multiple ML techniques such as Random Forest (RF), Decision tree (DT), Naive Bayes classifier(NBC), Neural network(NN), and Support vector machine (SVM). Expectation maximization (EM), K-means, Density, Filtered, and Farthest first (FF) clustering algorithms are applied for clustering. Compared to other algorithms, the K-means produces better superior accuracy. The regression technique is utilized for prediction. The outcomes of several methods are compared, and the most suitable ML algorithms utilized in this study are used to identify high-risk locations. In comparison to other identical architectures, the suggested architecture retains excellent accuracies. It is observed that the time taken to build the model using locally weighted learning(LWL) was 0.02 seconds, and the NN took more time to build, which is 0.90 seconds. To test the model, an LWL algorithm took more time which is 1.73 seconds, and the NN took less time to test, which is 0.02 seconds. The NBC has a 99.38 percent accuracy, the RF classifier has a 97.33 percent accuracy, and the DT has a 94.51 percent accuracy for the same data set. These algorithms have significant possibilities for predicting the likelihood of crowd risks of Covid-19 in a public space. This approach generates automatic notifications to concerned government authorities in any aberrant detection. This study is likely to aid researchers in modeling healthcare systems and spur additional research into innovative technology. © 2023 IEEE.

18.
Journal of the Faculty of Engineering and Architecture of Gazi University ; 38(2):1093-1104, 2023.
Article in Turkish | Scopus | ID: covidwho-2313755

ABSTRACT

With the rise of social media platforms, which have billions of users around the World, the dissemination of information has become easier than ever. The COVID-19 pandemic has increased the use of social media to discuss many topics, including vaccines. The aim of this study is to analyze public sentiment with Machine Learning of vaccine-related tweets obtained on Twitter in order to better understand the attitudes and concerns of social media users, especially regarding COVID-19 vaccines in Turkey. For this purpose, the majority voting method, which is an ensemble learning method, was developed by comparing the machine learning algorithm used in six different classification tasks and then via Support Vector Machine, XGBoost and Random Forest having the highest accuracy, in the study. Soft Voting method, which is one of the majority voting methods, has reached a success rate of 90.5%, with a higher success rate than both the Hard Voting approach and the other six individual machine learning approaches. With the Soft Voting method, which has the highest accuracy rate, 412,588 daily tweets from 153 days obtained from Twitter were analyzed and the results were reported. The findings of the study are very striking and differ from studies on other countries. As far as we know, this study is the first in Turkey to perform sentiment analysis on COVID-19 vaccines. In addition, the findings of the study show that the proposed method is a valuable and easily applied tool to monitor the sensitivity of COVID-19 vaccines with a sentiment analysis approach via social media. © 2023 Gazi Universitesi Muhendislik-Mimarlik. All rights reserved.

19.
Current Bioinformatics ; 18(3):221-231, 2023.
Article in English | EMBASE | ID: covidwho-2312823

ABSTRACT

A fundamental challenge in the fight against COVID-19 is the development of reliable and accurate tools to predict disease progression in a patient. This information can be extremely useful in distinguishing hospitalized patients at higher risk for needing UCI from patients with low severity. How SARS-CoV-2 infection will evolve is still unclear. Method(s): A novel pipeline was developed that can integrate RNA-Seq data from different databases to obtain a genetic biomarker COVID-19 severity index using an artificial intelligence algorithm. Our pipeline ensures robustness through multiple cross-validation processes in different steps. Result(s): CD93, RPS24, PSCA, and CD300E were identified as COVID-19 severity gene signatures. Furthermore, using the obtained gene signature, an effective multi-class classifier capable of discrimi-nating between control, outpatient, inpatient, and ICU COVID-19 patients was optimized, achieving an accuracy of 97.5%. Conclusion(s): In summary, during this research, a new intelligent pipeline was implemented to develop a specific gene signature that can detect the severity of patients suffering COVID-19. Our approach to clinical decision support systems achieved excellent results, even when processing unseen samples. Our system can be of great clinical utility for the strategy of planning, organizing and managing human and material resources, as well as for automatically classifying the severity of patients affected by COVID-19.Copyright © 2023 Bentham Science Publishers.

20.
Computer Journal ; 65(8):2146-2163, 2022.
Article in English | Scopus | ID: covidwho-2312430

ABSTRACT

With the rapid increase in the number of people infected with COVID-19 disease in the entire world, and with the limited medical equipment used to detect it (testing kit), it becomes necessary to provide another detection method that mainly relies on Artificial Intelligence and radiographic Image Analysis to determine the disease infection. In this study, we proposed a diagnosis system that detects the COVID-19 using chest X-ray or computed tomography (CT) scan images knowing that this system does not eliminate the reverse transcription-polymerase chain reaction test but rather complements it. The proposed system consists of the following steps, starting with extracting the image's features using Visual Words Fusion of ResNet-50 (deep neural network) and Histogram of Oriented Gradient descriptors based on Bag of Visual Word methodology. Then training the Adaptive Boosting classifier to classify the image to COVID-19 or NOTCOVID-19 and finally retrieving the most similar images. We implemented our work on X-ray and CT scan databases, and the experimental results demonstrate the effectiveness of the proposed system. The performance of the classification task in terms of accuracy was as follows: 100% for classifying the input image to X-ray or CT scan, 99.18% for classifying X-ray image to COVID-19 or NOTCOVID-19 and 97.84% for classifying CT scan to COVID-19 or NOTCOVID-19. © 2021 The British Computer Society.

SELECTION OF CITATIONS
SEARCH DETAIL